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a b s t r a c t

The effect of thermal dispersion upon heat transfer across a periodic array of parallel plates is studied.
Three basic heat transfer problems are addressed, each for steady, fully-developed, laminar fluid flow:
(a) transient heat transfer due to an arbitrary initial temperature distribution within the fluid, (b) steady
heat transfer with constant heat flux on all plate surfaces, and (c) steady heat transfer with constant wall
temperatures. For problems (a) and (b), the effective thermal dispersivity scales with the Peclet number
Pe according to 1 + CPe2, where the coefficient C is independent of Pe. For problem (c) the coefficient C is a
function of Pe.
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1. Introduction

Mass and heat convective transport processes in multiphase
systems (e.g., packed beds, cellular foams, lattice materials) are
of considerable practical importance as they occur in compact heat
exchangers, chemical reactions, groundwater movements, food
manufacturing and storage, heat carrying and cooling in nuclear
power stations, and so on. However, apart from a few idealized
models, detailed fluid flow and heat transfer at the pore level in
these porous media are complicated and difficult to analyse, owing
to the complex microstructure. Therefore, with focus placed on the
overall aspects of mass, momentum, and energy conservation prin-
ciples, volume-averaged quantities are commonly used to simplify
the analysis.

Much effort has been expended in calculating the effective ther-
mal properties of a fluid-saturated porous medium, such as its
effective conductivity and effective diffusivity. The rule-of-mix-
tures approximation is frequently adequate when the fluid is
motionless. When the fluid is moving, an additional effective ther-
mal property of the porous media becomes relevant, namely, the
effective thermal dispersivity (Taylor, 1953, 1954; Aris, 1956; Kurz-
weg and Jaeger, 1997; Yuan et al., 1991; Batycky et al., 1993;
Kuwahara et al., 1996, 2001; Kuwahara and Nakayama, 1999;
Nakayama and Kuwahara, 1999; Quintard et al., 1997; Zanotti
and Carbonell, 1984a–c; Xu, 2006; Quintard and Whitaker, 1993).
009 Published by Elsevier Inc. All r

x: +44 01223 332662.
Thermal dispersion is due to the combined effects of heat diffusion
in both the fluid and solid and to thermal convection within the
fluid.

The applicability of an effective thermal dispersivity is not re-
stricted to convective heat transfer in porous media. For example,
the concept of an effective dispersivity is useful for the analysis of
heat transfer in thermally conducting fluids moving past a ther-
mally conducting solid phase, e.g., thermal pulse propagation in
laminar flow within small diameter tubes (conduits) Kurzweg
and Jaeger, 1997; Yuan et al., 1991. These mathematically rigorous
studies, based on idealized geometries, are useful for understand-
ing the fundamental mechanism of thermal dispersion across por-
ous media such as packed beds. For example, Carbonell and
colleagues (1984a–c) have made use of idealized porous medium
models in order to obtain the dispersion–convection characteris-
tics of temperature variations in flows through packed beds; their
models have been widely made use of in chemical engineering
applications (Kurzweg and Jaeger, 1997).

The concept of dispersion was first developed for the analysis of
mass transfer in porous media (Taylor, 1953, 1954; Aris, 1956).
Velocity variations within a porous microstructure enhance the
mixing of fluid flow, and thereby speed up the spreading of mass
components from high concentration to low. In the analysis of
mass dispersion, the focus is shifted from length scales on the or-
der of the pores (i.e., the microscopic level) to the volume-averaged
(macroscopic) level. As a result of the averaging process, an
effective dispersivity appears naturally in the governing equations.
The mathematics of thermal dispersion is the same as for mass
ights reserved.
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Nomenclature

cp specific heat capacity under constant pressure,
J kg�1 K�1

D half-height of cell containing fluid and plate, m
H half-height of unit fluid channel, m
h effective heat transfer coefficient between plate surface

and the bulk fluid, W m�2 K�1

L length of plate array, m
Nu Nusselt number, Nu ¼ h2H

kf

Pe Peclet number, Pe ¼ um2H
af
¼ uav 2D

af

Pr Prandtl number, Pr ¼ mf

af
¼ Pe

Re
_Q heat source density in solid plates, W/m3

q heat flux, W m2

Re Reynolds number, Re ¼ um2H
mf
¼ uav 2D

mf

T temperature, K
t time, s
u fluid velocity, m s�1

x, y, z Cartesian coordinates, m

Greek letters
a thermal diffusivity, a ¼ k

qcp
;m2 s�1

b ratio of solid-to-fluid molecular conductivity, b ¼ ks=kf

k thermal conductivity, W m�1 K�1

e structural porosity, e ¼ H
D

g dimensionless space coordinate in y-direction, g ¼ y
H

h dimensionless temperature
l molecular viscosity, kg m�1 s�1

m kinetic viscosity, m2 s�1

n dimensionless space coordinate in x-direction, n ¼ x
L

q density, kg m�3

r ratio of two length scales, r ¼ H
L

U generic variable
u ratio of solid-to-fluid thermal diffusivity, / ¼ as=af
x1 dimensionless time coordinate for convection, x1 ¼ umt

L

x2 dimensionless time coordinate for diffusion, x2 ¼
af t

L2

Subscripts
f fluid
s solid
eff effective
av volume average
m bulk-mean
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dispersion, with concentration replaced by temperature. The effec-
tive thermal dispersivity is affected by the presence of porosity and
flow parameters in addition to the constituent materials; it is the
key parameter for dispersion analysis in porous media at the mac-
roscopic level.

Porous media such as packed beds, cellular foams and lattice
materials have complex micro-architectures, making difficult an
accurate evaluation of the effective dispersivity of temperature or
mass. To simplify the geometry, idealized geometries are com-
monly used to represent the porous media, for example an array
of parallel plates or circular tubes (Kurzweg and Jaeger, 1997; Yuan
et al., 1991), or periodically arranged spheres or rods (Kuwahara
et al., 1996; Kuwahara and Nakayama, 1999). After volume-averag-
ing, there is no essential difference between the macroscopic re-
sponse of these idealized models and that of the more realistic
porous structures. The advantage of using idealized models is that
analytical solutions at the pore level can be obtained and lead to
macroscopic effective constitutive relations that guide the disper-
sion analysis of porous media having more complicated structures.
For example, Taylor (1953) studied the transient dispersion of
mass along a circular tube, and the results show that the effective
dispersivity is a function of flow Peclet number only.

Several attempts have been made to analyse thermal dispersion
in simple porous media. For example, Kurzweg and Jaeger (1997)
studied the transient response due to an initial temperature distri-
bution in the fluid, using an array of parallel plates of zero thick-
ness, and thereby obtained the effective thermal dispersion
conductivity. Yuan et al. (1991) analytically studied thermal dis-
persion using thick-walled tubes, for both transient and steady
heat transfer, and obtained asymptotic solutions. They found that
the non-dimensional dispersive term has the form of 1 + CPe2,
where the Peclet number Pe can be expressed in terms of the Pra-
ndtl number Pr and the Reynolds number Re according to Pe = PrRe.
The proportionality coefficient C depends upon the aspect ratio of
tube cross-section, upon the thermal properties of fluid and tube,
and upon the temperature field. Batycky et al. (1993) used the Tay-
lor expansion technique to study thermal dispersion in a circular
cylinder and confirmed the Pe2 dependence.
The above studies of thermal dispersion are based upon tran-
sient analyses where the temperature of the incoming fluid under-
goes a step-wise change and the subsequent temperature field is
determined as a function of space and time (while the underlying
fluid flow is steady and generally considered laminar). The so-ob-
tained thermal dispersivity is then applied to steady-state heat
transfer in porous media (Kuwahara et al., 1996, 2001; Kuwahara
and Nakayama, 1999; Nakayama and Kuwahara, 1999; Quintard
et al., 1997), without justification. In order to validate whether
the dispersion obtained in transient analysis can be applied for
steady cases, the present study has assessed thermal dispersion
in both transient and steady cases. For simplicity, a parallel-plate
array serves as the prototypical porous medium, with fully-devel-
oped laminar fluid flow. Both transient and steady heat transfers
are analysed. In the steady state analysis, the sensitivity of re-
sponse to the choice of thermal boundary condition is addressed.
In addition, the effect of porosity of the idealized porous medium
upon thermal dispersivity is quantified.
2. Problem description

Consider steady-state laminar flow of an incompressible liquid
through an array of equi-spaced parallel plates, as shown in
Fig. 1a along with the coordinate system. We shall refer to the plate
material as the solid phase and the moving liquid between the sta-
tionary plates as the fluid phase, and use superscripts and sub-
scripts s and f to denote the solid and fluid, respectively. We
assume that the plates are large in both the stream-wise x-direc-
tion and the span-wise z-direction, compared to the cross-flow y-
direction, and also assume that the number of plates in the y-direc-
tion is large. The problem can then be considered as two-dimen-
sional in the (x, y) plane; also, the flow is taken to be fully-
developed, with entry and exit effects ignored. Periodicity in the
y-direction allows for volume averaging, with the integration per-
formed over a unit channel only, �D 6 y 6 D, where 2D is the
height of the unit cell. The problem thereby reduces to pseudo-
one-dimensional after volume averaging.



Fig. 1. Parallel plate array model. (a) The domain of interest, (b) the case with transient heat transfer, (c) the case with steady-state heat transfer, with uniform-distributed
heat source density within solid plates, (d) the case of steady heat transfer with zero-thickness plates and fixed heat flux condition (e) the case of steady heat transfer with
zero thickness and fixed surface temperature condition.
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Consider fully-developed incompressible laminar flow in a
channel of width 2H with bulk-mean fluid velocity um, see
Fig. 1a. Fluid flow occurs only in the stream-wise x-direction, and
the fluid velocity uf within a representative channel varies parabol-
ically with distance y from the mid-plane of the channel according
to:

uf ¼
3
2

um 1� y2

H2

� �
for � H 6 y 6 H: ð1Þ

The average velocity for the whole array is uav ¼ eum since the
solid plates are taken to be stationary, where e = H/D is the struc-
tural porosity, defined as the ratio of void volume to the overall
volume.

In the following sections, we shall study both transient and
steady heat transfer in the parallel plates and analyse the heat dis-
persion accordingly. For transient heat transfer study, we assume
no heat sources, as shown in Fig. 1b, but introduce a small temper-
ature disturbance at the entrance – as demonstrated in the follow-
ing section the disturbance profile is not important. Alternatively,
for the study of steady heat transfer, we maintain a fixed heat
source density _Q or a fixed temperature Tw in the plates (different
in value from that in the fluid). For the case of a fixed heat source
density, _Q the plate surfaces have a constant heat flux

q ¼ _Qð1�eÞ
ð1�eÞqscpsþeqf cpf

, see Fig. 1c. Note that the heat flux q is finite,

but the density _Q is singular for the limiting case of a zero-thick-
ness plates, as shown in Fig. 1d. For the case of a fixed plate tem-
perature, the plates of zero thickness have a temperature Tw, see
Fig. 1e.

In all cases considered, ideal heat transfer is assumed at the
solid–fluid interface. Write Ts as the temperature in the solid
phase and Tf as the temperature in the fluid phase, then there is
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neither a jump in temperature nor in heat flux at the plate surfaces,
giving:

Tsjy¼�H ¼ Tf

��
y¼�H and �ks

@Ts

@y

����
y¼�H

¼ �kf
@Tf

@y

����
y¼�H

: ð2Þ

Here, kf and ks are thermal conductivities for the fluid phase and
solid phase, respectively.

The effective thermal dispersion is determined in terms of vol-
ume-averaged quantities. Introduce the operator hi, absent a
superscript s or f, to denote volume-averaging over both phases,
as follows. y-direction averaging over one channel �D < y < D is de-
fined by:

hUi ¼ 1
2D

Z D

�D
Udy ¼ 1

D

Z D

0
Udy; ð3Þ

where U is any variable, such as velocity u or temperature T. For
example, the average velocity of the fluid and solid is uav ¼ hui.
The averaging procedure splits a variable into two parts, the aver-
aged value and the perturbed value U ¼ hUi þU0.

Averaging is also performed over each phase, and this is termed
intrinsic volume averaging. Denote h is as the volume-average over
the solid phase, and hif as the volume-average over the fluid phase,
such that

hUis ¼ 1
2ðD� HÞ

Z D

H
Udyþ

Z �H

�D
Udy

� �
¼ 1

D� H

Z D

H
Udy; ð4Þ

and

hUif ¼ 1
2H

Z H

�H
Udy ¼ 1

H

Z H

0
Udy; ð5Þ

Here, we have exploited the symmetry of flow with respect to
the mid-plane y = 0.

Write Uf as the value of U within the fluid phase and assume
compact support such that Uf = 0 in the solid phase. Likewise, write
Us as the value of U within the solid phase and assume that Us = 0
in the fluid phase. Then, the intrinsic and overall volume-averaged
variables are related by:

hUf if ¼
1
e
hUf i; ð6Þ

hUsis ¼
1

1� e
hUsi: ð7Þ

Note that hUsif ¼ 0 and hUf is ¼ 0. Additional features of vol-
ume-averaging are given in Appendix A.

As already discussed, the problem described in this section is
one-dimensional along the x-direction after averaging over the y-
direction. The macroscopic momentum equation reduces to
hui � uav for fully-developed flow. The stream-wise velocities and
pressure gradient are taken to be independent of x. And, after
cross-flow y-direction averaging, the macroscopic energy equation
depends only upon x.
Fig. 2. One-dimensional energy balance ana
Focusing now upon the macroscopic, one-dimensional problem,
we analyse the energy balance in a small volume dx in the flow
direction over a small time interval dt, as illustrated in Fig. 2. First
note, that hTi denotes the macroscopic, volume-averaged temper-
ature. Write (qcp)eff as the effective thermal capacity per unit
volume and denote the effective thermal conductivity by keff ¼
ðqcpÞeff � aeff , in terms of the effective thermal diffusivity. Then,
the total energy increase is 2D � ðqcpÞeff �

@hTi
@t � dx � dt. The net energy

increase due to conduction and convection is 2D � keff � @
2hTi
@x2 � dx � dt

and 2D � ðqcpÞeff � uav
@hTi
@x � dx � dt, respectively. If there exists an uni-

formly distributed heat source density _Q in the solid plates, then
the energy increase due to the heat source is 2ðD� HÞ � _Q � dx � dt.

In subsequent sections, the role of the effective thermal disper-
sivity and the underlying physical mechanisms of thermal disper-
sion are explored further by developing analytical solutions to
several particular cases of the parallel-plate model with particular
choices of boundary condition and initial condition.

3. Transient heat transfer across an array of parallel plates

Consider the case where a thermal disturbance occurs within
the porous medium (with no heat source available). We specialize
this to the problem where a thermal pulse is introduced at the en-
trance of the parallel-plate array, as illustrated in Fig. 1b. Thermal
penetration into the system is faster due to velocity non-unifor-
mity across the channel, compared with that of plug flow with a
uniform velocity distribution. Zanotti and Carbonell (1984a–c)
have shown that, after a sufficiently long time period, the thermal
pulse will travel at the same speed in both phases.

3.1. Effective thermal dispersion

The microscopic governing equation for the temperature Ts in
the solid phase and the temperature Tf in the fluid phase are

@Ts

@t
¼ as

@2Ts

@x2 þ
@2Ts

@y2

 !
for H 6 jyj 6 D; ð8Þ

@Tf

@t
þ uf

@Tf

@x
¼ af

@2Tf

@x2 þ
@2Tf

@y2

 !
for jyj 6 H; ð9Þ

where t is time, a ¼ k
qcp

is the thermal diffusivity, and q, cp and k are
material density, specific heat under constant pressure and thermal
conductivity, respectively.

We proceed to homogenize Eqs. (8) and (9) into a single one-
equation model (Quintard and Whitaker, 1994; Moyne et al.,
2000) at the macroscopic level by assuming local thermal equilib-
rium hTif ¼ hTis ¼ hTi. The assumption of local thermal equilibrium
is valid when the net energy transfer between fluid phase and solid
phase is zero. The more general case of local thermal non-equilib-
rium hTif –hTis exists when the flow is not thermally fully-devel-
oped at entrance, or where the thermal conductivity difference
lysis of the macroscopic representation.
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between solid and fluid phases is extreme (Xu, 2006, pp. 30–31). A
two-equation model is required for these cases (Quintard et al.,
1997; Quintard and Whitaker, 1993; Hsiao and Advani, 1999).
We emphasise that local thermal equilibrium is assumed herein.

We follow the theoretical work of Whitaker and his co-workers
(1997, 1993, 1994, 1967) and Moyne et al. (2000), in order to eval-
uate the hydraulic dispersion effect. The energy equation after vol-
ume averaging can be written as:

hqcpi
@hTi
@t
þ qf cpf

@ huihTi þ ehu0f T
0
f i

� �
@x

¼ hki @
2hTi
@x2 ; ð10Þ

where hqcpi ¼ ½ð1� eÞqscps þ eqf cpf � and hki ¼ ½ð1� eÞks þ ekf � are
the volume-averaged heat capacity and thermal conductivity,
respectively. Eq. (10) can be rephrased as:

@hTi
@t
þ uav

@hTi
@x
¼ hai @

2hTi
@x2 �

eqf cpf

hqcpi
@hu0f T

0
f i

@x
; ð11Þ

where hai ¼ hki
hqcpi is the volume-averaged diffusivity.

On the right-hand side of Eq. (11), the first term expresses the
contribution from thermal conduction and the second one ac-
counts for dispersion. Upon combining these terms Eq. (11) re-
duces to

@hTi
@t
þ uav

@hTi
@x
¼ aeff

@2hTi
@x2 ; ð12Þ

where aeff ¼
keff

ðqcpÞeff
is the effective dispersivity and can be evaluated

from:

aeff
@hTi
@x
¼ hai @hTi

@x
�

eqf cpf

hqcpi
hu0f T 0f i; ð13Þ

or, in non-dimensional form,

aeff

hai ¼ 1�
eqf cpf

hki
hu0f T 0f i
@hTi=@x

¼ 1þ
eqf cpf

hki
huihTi � huf Tf i

@hTi=@x
: ð14Þ

The left-hand side of Eq. (14) is the relative effective thermal
dispersivity. The number of unity on the right-hand side of Eq.
(14) addresses the (relative) molecular diffusivity while the second
term measures the pure dispersion effect. Thus, the above expres-
sion displays the feature that the effective diffusivity comprises
both the molecular diffusivity and the dispersion effect.

In order to understand the physical meaning of thermal disper-
sion, we examine in more detail the second term on the right-hand
side of Eq. (14). This contribution to dispersivity is inversely pro-
portional to the heat flux density along the flow direction, hki @hTi

@x ,
and proportional to the difference between the uniformly distrib-
uted heat flux and the volume-averaged heat flux. As illustrated
in Fig. 3, the uniformly distributed heat flux is contained within
the vertical bar (shadowed region), whilst the volume-averaged
Fig. 3. Physical representations of heat fluxes: curved area: actual area containing
heat flux for the averaging procedure. Vertical bar: assumingly uniformly distrib-
uted heat flux.
heat flux is contained within the parabolic-shaped shadow area.
The dispersion concept quantifies the microscopic non-uniformity
of the heat flux distribution. There is no dispersion in a porous
medium if either the velocity or temperature is uniformly distrib-
uted at the microscopic (pore) level. The non-uniformity of velocity
distribution within each fluid channel is a consequence of the por-
ous structure; the non-uniformity of temperature distribution is
attributed to both the velocity non-uniformity and the thermal
boundary conditions.

We proceed to evaluate Eq. (14). First, the spatial coordinates
are non-dimensionalized as:

n ¼ x
L

; g ¼ y
H
; ð15Þ

where the plate length L is a length scale at the structural level, and
is usually much larger than the length scale at the pore level, i.e.
L� D � H. The time coordinate is converted to two timescales:

x1 ¼
umt

L
; x2 ¼

af t

L2 ; ð16Þ

where x1 is the non-dimensional timescale associated with the
stream-wise convection and x2 the one with the molecular diffu-
sion. This kind of multiple time scale analysis is generally employed
to deal with processes where fast and slow dynamics coexist (Vora
et al., 2006; Mahecha-Botero et al., 2007). Application of the chain
rule of differentiation with respect to time results in:

@U
@t
¼ @U
@x1

dx1

dt
þ @U
@x2

dx2

dt
¼ um

L
@U
@x1

þ af

L2

@U
@x2

:

The reasons to use two different length scales and two different
time scales are:

(1) Heat transfer mechanisms in the x- and y-directions are dif-
ferent: heat transfer along the stream-wise x-direction is by
both convection and conduction; in the cross-flow y-direc-
tion, only conduction occurs. With a slow flow, e.g., Peclet
number (Pe, as described in the next paragraph) is smaller
than 5, the x-direction conduction is relatively significant
compared with the convection; as Peclet number increases,
convection dominates over conduction.

(2) The speeds of heat penetration are different for convection
and diffusion. The former is faster than the latter at a Peclet
number greater than 1.

(3) Consequently, different physical phenomena will be sepa-
rated in the governing equations by using different length
and time scales.

We introduce some useful dimensionless parameters for later
convenience: Reynolds number, Re ¼ uav 2D

mf
¼ um2H

mf
; Prandtl number,

Pr ¼ mf

af
¼ lf cpf

kf
; Peclet number, Pe ¼ uav 2D

af
¼ um2H

af
¼ RePr. Write h as

the effective heat transfer coefficient between plate surface and
the bulk fluid, h ¼ q

Tw�Tm
, where q is the heat flux from solid surface

to fluid, Tw and Tm are the temperature values of the plate surface
and bulk fluid, respectively. Then, the Nusselt number is Nu ¼ 2Hh

kf
,

where mf and lf are the kinematical and molecular fluid viscosity,
with mf ¼

lf

qf
.

The governing equations (8) and (9) are thereby non-dimen-
sionalized to the form:

Pe
2

r
@Tf

@x1
þ r2 @Tf

@x2
þ 3Pe

4
rð1� g2Þ @Tf

@n

¼ r2 @
2Tf

@n2 þ
@2Tf

@g2 for 0 6 g 6 1; ð17Þ
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Pe
2/

r @Ts

@x1
þ r2

/
@Ts

@x2
¼ r2 @

2Ts

@n2 þ
@2Ts

@g2 for 1 6 g 6
1
e
; ð18Þ

where r ¼ H
L and / ¼ as

af
. Similarly, the continuity of temperature and

heat-flux boundary conditions (as described originally by Eq. (2))
become:

Tsjg¼1 ¼ Tf

��
g¼1;

@Tf

@g

����
g¼1
¼ b

@Ts

@g

����
g¼1

; ð19Þ

for interfacial boundaries, where b ¼ ks
kf

, and

@Tf

@g

����
g¼0
¼ 0;

@Ts

@g

����
g¼1

e

¼ 0; ð20Þ

for symmetric boundaries.
Now write temperatures Tf and Ts as asymptotic expansions in

powers of the free parameter r,

Tf ¼ Tf 0 þ Tf 1rþ Tf 2r2 þ Tf 3r3 þ � � � ; ð21Þ

Ts ¼ Ts0 þ Ts1rþ Ts2r2 þ Ts3r3 þ � � � ; ð22Þ

where Tf, Ts, Tf0, Ts0, Tf1, Ts1, . . . are each functions of n, g, x1 and x2.
The expansions converge rapidly as the value of r is small.

Upon substituting Eqs. (21) and (22) into Eqs. (17) and (18), we
collect terms in like powers of r, and this leads to a hierarchy of
linear differential equation sets. Since r is a free parameter, the
boundary conditions must be satisfied at each power of r.

At level r0:

@2Tf 0

@g2 ¼ 0 for 0 6 g 6 1 ;

@2Ts0
@g2 ¼ 0 for 1 6 g 6 1

e ;

Ts0jg¼1 ¼ Tf 0

��
g¼1;

@Tf 0
@g

���
g¼1
¼ b @Ts0

@g

���
g¼1

;

@Tf 0
@g

���
g¼0
¼ 0; @Ts0

@g

���
g¼1

e

¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

At level r1:

@2Tf 1

@g2 � Pe
2

@Tf 0
@x1
� 3Pe

4 ð1� g2Þ @Tf 0
@n ¼ 0 for 0 6 g 6 1 ;

@2Ts1
@g2 � Pe

2/
@Ts0
@x1
¼ 0 for 1 6 g 6 1

e ;

Ts1jg¼1 ¼ Tf 1

��
g¼1;

@Tf 1
@g

���
g¼1
¼ b @Ts1

@g

���
g¼1

;

@Tf 1
@g

���
g¼0
¼ 0; @Ts1

@g

���
g¼1

e

¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

At level r2:

@2Tf 2

@g2 � Pe
2

@Tf 1
@x1
� 3Pe

4 ð1� g2Þ @Tf 1
@n �

@Tf 0
@x2
þ @2Tf 0

@n2 ¼ 0 for 0 6 g 6 1 ;

@2Ts2
@g2 � Pe

2/
@Ts1
@x1
� 1

/
@Ts0
@x2
þ @2Ts0

@n2 ¼ 0 for 1 6 g 6 1
e ;

Ts2jg¼1 ¼ Tf 2

��
g¼1;

@Tf 2
@g

���
g¼1
¼ b @Ts2

@g

���
g¼1

;

@Tf 2
@g

���
g¼0
¼ 0; @Ts2

@g

���
g¼1

e

¼ 0:

8>>>>>>>>><
>>>>>>>>>:

At level r3

@2Tf 3

@g2 � Pe
2

@Tf 2
@x1
� 3Pe

4 ð1� g2Þ @Tf 2
@n �

@Tf 1
@x2
þ @2Tf 1

@n2 ¼ 0 for 0 6 g 6 1 ;

@2Ts3
@g2 � Pe

2/
@Ts2
@x1
� 1

/
@Ts1
@x2
þ @2Ts1

@n2 ¼ 0 for 1 6 g 6 1
e ;

Ts3jg¼1 ¼ Tf 3

��
g¼1;

@Tf 3
@g

���
g¼1
¼ b @Ts3

@g

���
g¼1

;

@Tf 3
@g

���
g¼0
¼ 0; @Ts3

@g

���
g¼1

e

¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:
To solve the original set of equations, Eqs. (17)–(20), we must
solve the above hierarchy of sets of equations, level by level. The
solution at level r0 is:

Tf 0 � Ts0 ¼ F0ðx1;x2; nÞ; ð23Þ

in terms of an unknown function F0(x1, x2, n). Thus, Tf0 and Ts0 are
equal and independent of the coordinate g.

Making use of Eq. (23), we next solve the equation set at level
r1:

Tf 1 ¼
Peðb� beþ /eÞ

16/e
@F0

@x1
g4 � Peð3b� 3beþ /eÞ

8/e
@F0

@x1
g2

þ F1ðx1;x2; nÞ; ð24Þ

Ts1 ¼
Pe
4/

@F0

@x1
g2 � Pe

2/e
@F0

@x1
gþ F1ðx1;x2; nÞ

þ Peð8� 5bþ 5be� 4e� /eÞ
16/e

@F0

@x1
; ð25Þ

in terms of some unknown function F1 which is independent of g.
Upon repeating the above procedure, we obtain more complicated
results involving unknown functions F2ðx1;x2; nÞ, F3ðx1;x2; nÞ, . . .

A knowledge of the initial condition and the boundary conditions
at the entrance of the system is required in order to determine these
functions. Although they are not explicitly known at this stage of
the analysis, these functions are known to be independent of g.
Therefore, upon treating the g-free functions F0, F1, F2, . . . as param-
eters, the dependence of Tf 0, Tf 1, Tf 2, . . . and Ts0, Ts1, Ts2, . . . upon g is
known.

Fortunately, the relative effective dispersivity can be evaluated
from only the incomplete solutions at levels r0 and r1, owing to
the rapid convergence of the expansions in Eqs. (21) and (22) with
respect to r.

Substitution of Eq. (1) into Eq. (14) leads to:

aeff

af
¼ 1þ ePe

4
3
R 1

0 g2Tf dg�
R 1

0 Tf dg
r @

@n

R 1
0 Tf dg

: ð26Þ

and upon making use of Eqs. (21) and (26), we obtain:

aeff

af
¼ 1þ ePe

4

Peð�9bþ9be�2/eÞ
105/e

@F0
@x1
þ OðrÞ

�bþbe�/e
/e

@F0
@x1
þ OðrÞ

; ð27Þ

Now, the infinitesimal OðrÞ can be ignored as r ¼ H
L is small,

resulting in:

aeff

af
¼ 1þ CPe2; ð28Þ

and (28)

C ¼ e
420

9b� 9beþ 2/e
b� beþ /e

¼ e
420

9ð1� eÞqscps þ 2eqf cpf

ð1� eÞqscps þ eqf cpf
: ð29Þ

We emphasise that the second term on the right-hand side of
Eq. (28) gives the contribution to the effective thermal diffusivity
from the thermal dispersion. This is consistent with a previous
observation by Kaviany (1995): a Pe2 relationship exists if an ide-
alized porous medium has an in-line arrangement, whereas for a
stagger arrangement or for a randomized porous structure, the
power index is closer to unity.

The analytical results of Eqs. (28) and (29) demonstrate that the
dispersion effect scales as Pe2 for the parallel-plate array model
with laminar flows, no matter how the thermal disturbance is
introduced and how the initial temperature is distributed. The con-
stant C depends upon both the structural porosity e and upon the



Fig. 4. Coefficient C as a function of porosity e and effective heat capacity ratio
ð1�eÞqs cps

eqf cpf
. The 3D surface represents coefficient C for transient heat transfer in a

general parallel-plate array with a finite plate thickness.

J. Xu et al. / International Journal of Heat and Fluid Flow 31 (2010) 57–69 63
effective heat capacity ratio (defined as the ratio of heat capacity of

solid phase to that of fluid phase within unit volume, ð1�eÞqscps

eqf cpf
); this

dependence is plotted in Fig. 4. In the limit e ¼ 1 (i.e. the plates
have zero thickness), the relative effective dispersivity of (34) re-
duces to:

aeff

af
¼ 1þ 1

210
Pe2; ð30Þ

in agreement with the result given by Kurzweg and Jaeger (1997).

4. Steady heat transfer across an array of parallel plates

Three selected cases are now studied for the steady state trans-
fer of heat occurs across an array of parallel plates and analytical
solutions for temperature distributions are obtained:

(1) plates of zero thickness and constant heat flux, q, flowing
from plate surfaces into the neighboring fluid channels,
illustrated in Fig. 1d;

(2) plates of zero thickness and constant temperature, Tw, at the
plate surfaces, illustrated in Fig. 1e;

(3) plates of finite thickness and uniform heat density, _Q , illus-
trated in Fig. 1c.

4.1. Zero-thickness plate with constant heat flux

If the solid plates have zero thickness (i.e. D ¼ H, thus e ¼ 1), the
problem is considerably simplified because the volume averaging
is performed on the fluid phase only. Thermal dispersion persists
within the array of zero-thickness plates due to the non-uniformity
of local fluid velocity.

For this case, the microscopic governing equation for energy in
the fluid channel can be written as:

@ðuTÞ
@x

¼ af
@2T
@x2 þ

@2T
@y2

 !
: ð31Þ

Follow the similar y-direction averaging procedure, the macro-
scopic energy equation becomes:

uav
dhTi
dx
¼ aeff

d2hTi
dx2 þ

q
dqf cpf

; ð32Þ

where the heat flux arises from the constant heat-flux boundary
condition.

Substituting T ¼ hTi þ T 0 and u ¼ hui þ u0 into Eq. (31) and tak-
ing the y-direction averaging, we arrive at:

uav
dhTi
dx
þ dhu0T 0i

dx
¼ af

d2hTi
dx2 þ

af q
kf D

: ð33Þ
Alternatively, Eq. (33) can be written in a form similar to Eq.
(32):

uav
dhTi
dx
¼ af

d2hTi
dx2 �

dhu0T 0i
dx

þ q
qf cpf D

: ð34Þ

Upon comparing Eqs. (32) and (34), we have:

aeff
dhTi
dx
¼ af

dhTi
dx
� hu0T 0i; or ð35Þ

keff
dhTi
dx
¼ kf

dhTi
dx
� qf cpf ðhuTi � huihTiÞ: ð36Þ

from which we obtain:

keff

kf
¼ 1þ 1

af

huihTi � huTi
dhTi=dx

: ð37Þ

The analytical solution for the temperature field in the array is
given by (see Appendix B):

T ¼ 2q
kf Pe

x� q

8kf H3 y4 þ 3q
4kf H

y2 þ T0; ð38Þ

where T0 is the reference temperature at the origin of the coordi-
nate system. It follows from Eq. (38) that the stream-wise temper-
ature gradient is constant. This gradient is proportional to the heat
source density and inversely proportional to the average fluid veloc-
ity, fluid heat capacity and distance between plates.

Substitution of Eqs. (1) and (38) into Eq. (37) results in:

keff

kf
¼ 1þ 3

140
Pe2: ð39Þ

Again, it is seen that the relative effective dispersivity has the
form of 1þ CPe2, with C ¼ 3

140.

4.2. Constant wall-temperature boundary conditions

For zero-thickness plates, we again have D ¼ H and e ¼ 1. Upon
assuming that the solid plates have constant surface temperature,
Tw, we obtain the analytical solution for temperature field (see
Appendix C):

T ¼ Tw � hðTw � TmÞ ¼ Tw � hDT0e�
Nu
Pe

x
H; ð40Þ

where DT0 is the difference between wall temperature and center-
line temperature at the entrance, and h is the dimensionless excess
temperature determined from:

d2h
dg2 þ h �3Nu

4
g2 þ 3Nu

4
þ Nu2

Pe2

 !
¼ 0: ð41Þ

Here, g is the dimensionless coordinate in the cross-stream
direction and the associated boundary conditions are given by:

hjg¼1 ¼ 0;
dh
dg

����
g¼1
¼ �Nu

2
;

dh
dg

����
g¼0
¼ 0: ð42Þ

As discussed in Appendix C, the solution to Eq. (41) subjected to
the conditions of (42) is an even function of Pe.

With the above solutions to the temperature field, the effective
dispersivity of the parallel-plate array system is given by:

keff

kf
¼ 1þ Pe2 1�

R 1
0 hdg

2Nu
: ð43Þ

This can be rewritten as 1þ CPe2, where

C ¼ 1
2Nu

� 1
2Nu

Z 1

0
hdg ð44Þ



Fig. 5. Relative effective thermal dispersivity as the function of Peclet numbers for
zero-thickness plates. Dotted line: for transient heat transfer; solid line: for steady
heat transfer with constant heat flux condition; dashed line: for steady heat transfer
with constant plate temperature condition.

Fig. 6. Coefficient C in Eq. (C21) plotted as a function of Peclet number Pe for
constant wall temperature case. As Peclet number Pe increases, coefficient C
decreases rapidly and is asymptotic to the constant 0.02426.
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depends upon the solution of Eq. (41). Now, Eq. (41) is a non-linear
second-order ordinary differential equation, and possesses a closed-
form solution (see Appendix C). As the Peclet number Pe is a free
variable in Eq. (41), the coefficient C is a function of Pe. Fig. 5 plots
the relatively effective dispersivity keff =kf as a function of Pe, whilst
the dependence of C on Pe is shown in Fig. 6. It is seen from these
results that the term Nu2

Pe2 in Eq. (41) is significant only if the Peclet
number is relatively small (Pe < 20). When Pe P 20, keff =kf has
the usual Pe2 dependence, and C asymptotes to a constant (Fig. 6).

In order to evaluate the limiting value of C, we ignore the term
Nu2

Pe2 in Eq. (41) to arrive at:

d2h
dg2 þ h �3Nu

4
g2 þ 3Nu

4

� �
¼ 0: ð45Þ

Solving C from Eqs. (44) and (45), we obtain C ¼ 0:02426. Con-
sequently, for usual Peclet numbers (Pe P 20), the relatively effec-
tive dispersivity can be written as:

keff

kf
¼ 1þ 0:02426Pe2: ð46Þ

This limiting value of C is included in Fig. 6.
4.3. Constant heat-flux boundary conditions with finite plate thickness

The final case analysed is an array of parallel plates having finite
thickness and uniform heat density _Q . The heat fluxes on all plate
surfaces have a single constant value. The situation is similar to
that of Case 1 as discussed in Section 4.1 and hence the problem
can be solved using the same procedure. With some additional ef-
fort, the analytical solution for the temperature field is obtained as:

Tf ¼
ð1� eÞ _QH

2ePekf
x� ð1� eÞ _Q

8ekf H2 y4 þ 3ð1� eÞ _Q
4ekf

y2 þ T0 for jyj 6 H;

ð47Þ

Ts ¼
ð1� eÞ _QH

2ePekf
x�

_Q
2ks

y2 þ
_QH
eks

yþ T0 þ
_QH2

eks

5
8

bð1� eÞ � 1þ e
2

� �
for H 6 jyj 6 D; ð48Þ

With the above temperature field, the relative effective disper-
sivity is finally obtained as:

keff

kf
¼ 1þ 3e

140
Pe2: ð49Þ

The relationship of 1þ CPe2 appears again, and C ¼ 3e
140 is inde-

pendent of Pe.
Note that, when e ¼ 1, the relationship of (49) reduces to Eq.

(39) for an array of parallel plates with zero thickness. In other
words, Case 1 as discussed in Section 4.1 is a limiting case of that
discussed in this section.
5. Discussion

The analytical results derived above demonstrate that the effec-
tive thermal dispersivity of the parallel-plate model depends upon
the thermal setting. For each case considered, the thermal disper-
sion depends only on structure properties and the underlying flow;
changes in initial thermal conditions do not change the dispersion.
However, the degree of thermal dispersion for the transient case
differs from that for the steady state case. And for the steady state
case, the magnitude of dispersion is dependent upon the assumed
boundary conditions. To illustrate all this, the effective thermal
dispersivity is plotted in Fig. 5 as a function of the Peclet number
for both steady and transient heat transfer, in limiting case when
the solid plates have zero thickness (e ¼ 1).

For a given Peclet number, the results of Fig. 5 show that the
constant wall-temperature boundary condition has the largest dis-
persion effect whilst the transient case has the smallest effect. This
is because:

(i) all three cases have identical velocity non-uniformity;
(ii) for the transient case, the temperature non-uniformity is

small as it is caused only by the underlying velocity non-uni-
formity, and

(iii) for the constant heat flux and constant wall temperature
conditions, in addition to the temperature non-uniformity
associated with velocity non-uniformity, the imposed heat
source condition also contributes to the temperature non-
uniformity. Furthermore, the boundary condition of a con-
stant wall temperature enhances the temperature non-uni-
formity to more than that of the constant heat flux case.

Note that Eq. (28) can be transformed into Eq. (49) when
the effective heat capacity ratio ð1�eÞqscps

eqf cpf
becomes infinitely large.

This is reasonable by the following reasoning. When the heat
capacity of the solid is much larger than that of the fluid, the
thermal status of a solid plate is resistant to temperature changes
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in the neighboring fluid phase, and hence the heat flux from the so-
lid plate approaches a constant.

6. Conclusions

The analytical results using the parallel-plate array model lead
to the following conclusions.

(1) Thermal dispersion in a porous medium such as parallel-
plate arrays is caused by the non-uniformity of heat flux dis-
tribution at the pore (microscopic) level. This includes both
velocity non-uniformity and temperature non-uniformity.
Temperature non-uniformity is induced either by velocity
non-uniformity or by the thermal boundary conditions.

(2) The effective thermal dispersivity of a porous medium has
contributions from both the molecular diffusion and hydrau-
lic dispersion. In the parallel-plate array model, the hydraulic
dispersion is always proportional to Pe2 and quickly surpasses
the molecular diffusion as the Peclet number increases,
becoming the dominant mechanism for heat transfer.

(3) Thermal dispersion is not a property of the porous medium
depending only on the pore morphology, porosity and the
underlying fluid flow. It is also affected by the type of ther-
mal setting imposed on the medium. This is because the
velocity non-uniformity is not the only cause of temperature
non-uniformity. The effective thermal dispersivity of a por-
ous medium obtained using one type of thermal setting
should be used cautiously when the thermal setting is
changed.

(4) Under the condition that the solid heat capacity is much lar-
ger than that of the fluid, the case of constant heat source
density in solid plates (i.e. the case discussed in Section
4.3) can be represented by the transient case (i.e. that dis-
cussed in Section 3). It can be further reduced to the case of
constant heat flux when the porosity approaches unity (i.e.
the plates have zero thickness, as discussed in Section 4.1).
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Appendix A. y-direction averaging procedure and its
characteristics

Recall the y-direction averaging procedures as defined in Eqs.
(3)–(5). Then, a number of characteristics of volume-averaged vari-
ables and useful results can be obtained:

(1) Averaged variables and deviation variables:

Volume-averaging is an idempotent operation:
hhUii ¼ 1
2D

Z D

�D
hUidy ¼ 1

2D
hUi2D ¼ hUi;
Also,
hU0i ¼ 1
2D

Z D

�D
ðU� hUiÞdy ¼ 1

2D

Z D

�D
Udy� 1

2D

Z D

�D

hUidy ¼ hUi � hUi ¼ 0;

hUi0 ¼ hUi � hhUii ¼ hUi � hUi ¼ 0;
U00 ¼ U0 � hU0i ¼ U0 � 0 ¼ U0:
In summary,
hhUii ¼ hUi; U00 ¼ U0 and hU0i ¼ 0; hUi0 ¼ 0; ðA1Þ
(2) Summation and product of two variables:
hU1 þU2i ¼
1

2d

Z d

�d
ðU1 þU2Þdy ¼ 1

2D

Z D

�D
U1dyþ 1

2D

Z D

�D

U2dy ¼ hU1i þ hU2i;
hU1U2i ¼ hðhU1i þU01ÞðhU2i þU02Þi ¼ hhU1ihU2i

þU01U
0
2 þ hU1iU02 þU01hU2ii

¼ hhU1ihU2ii þ hU01U
0
2i þ hhU1iU02i þ hU

0
1hU2ii

¼ hU1ihU2i þ hU01U
0
2i þ hU1ihU02i þ hU

0
1ihU2i

¼ hU1ihU2i þ hU01U
0
2i þ hU1i0þ 0hU2i

¼ hU1ihU2i þ hU01U
0
2i
In summary, the volume-averaging operation is linear,
hU1 þU2i ¼ hU1i þ hU2i; hU1U2i ¼ hU1ihU2i þ hU01U
0
2i:
ðA2Þ
(3) Derivatives:
@U
@x

	 

¼ 1

2D

Z D

�D

@U
@x

dy¼ 1
2D

Z D

�D
lim
dx!0

Uðxþdx;yÞ�Uðx;yÞ
dx

dy

¼ lim
dx!0

1
2D

R D
�D Uðxþdx;yÞdy� 1

2D

R D
�D U x;yð Þdy

dx

¼ @

@x
1

2D

Z D

�D
Udy

� �
¼ @hUi

@x
:

Similarly,
@2U
@x2

* +
¼ @

@x
@U
@x

	 

¼ @

@x
@hUi
@x

� �
¼ @

2hUi
@x2 :
To summarise, the orders of spatial derivation and volume-
averaging are interchangeable,
@U
@x

	 

¼ @hUi

@x
;

@2U
@x2

* +
¼ @

2hUi
@x2 : ðA3Þ
(4) Overall volume-averaging and intrinsic volume-averaging:
hUi ¼ ehUif ¼ ð1� eÞhUis; ðA4Þ

where e ¼ H=D is the porosity of the parallel-plate array.
Appendix B. Analytical solution for constant heat-flux boundary
condition

In the fully-developed region for steady heat transfer with a
constant input heat flux from the solid phase, the stream-wise
temperature gradient and the local heat transfer coefficient are
constant along x-direction. For the present problem, the local heat
transfer coefficient, hx, along the plate surface is given by Incropera
and DeWitt (1985):

hx ¼
�q

Tm;x � Tw;x
; ðB1Þ

where Tw;x and Tm;x are the local values of the plate surface
temperature and bulk-mean fluid temperature, respectively. The
bulk-mean fluid temperature is defined by Incropera and DeWitt
(1985):

Tm ¼
R H
�HðuTÞdyR H
�H udy

: ðB2Þ



Fig. 7. Energy balance analysis for the case of steady heat transfer (both constant
heat flux and constant wall-temperature boundary conditions).
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Since hx ¼ h is constant along the x-direction, Tm;x � Tw;x is also
independent of x. This implies that the temperature difference be-
tween fluid (bulk-mean) and wall is constant if the wall heat flux is
constant and the flow is fully-developed, namely:

Tm � Tw ¼ �
q
h
: ðB3Þ

Let the dimensionless excess temperature be defined as the ra-
tio of the difference between a local temperature and the wall tem-
perature to the difference between the bulk-mean temperature
and the same wall temperature, all at the same x-position (Incrop-
era and DeWitt, 1985):

hðx; yÞ ¼ T � Tw

Tm � Tw
; ðB4Þ

The boundary conditions can then be written as:

hjy¼�H ¼ 0;

@h
@y

����
y¼�H

¼ 	 h
kf
:

For fully-developed laminar convection, substitution of Eq. (1)
into Eq. (B2) leads to:

Tm ¼
3

4H

Z H

�H
1� y2

H2

� �
T

� �
dy: ðB5Þ

From Eqs. (B3) and (B4), we have

T ¼ � q
h

hþ Tw: ðB6Þ

Substituting Eq. (B6) into Eq. (B5), we have

Tm ¼
3q

4hH

Z H

�H
1� y2

H2

� �
h

� �
dyþ Tw; ðB7Þ

and, because of Eq. (B3),

1
2H

Z H

�H
1� y2

H2

� �
h

� �
dy ¼ 2

3
: ðB8Þ

Since the right-hand side of Eq. (B8) is a constant, the left-hand
side should not depend on x. Hence h must be independent of x,
that is,

@h
@x
¼ 0: ðB9Þ

Making use of Eqs. (B3), (B6), and (B9), we arrive at:

@T
@x
¼ dTm

dx
¼ dTw

dx
: ðB10Þ

This means that, at any given position along the cross-stream
direction, the stream-wise temperature gradient remains un-
changed in the stream-wise direction (i.e. @T=@x does not depend
upon y).

Considerations of energy conservation for a volume shown by
dashed lines in Fig. 7 lead to:

kf H
d2Tm

dx2 � qf cpf umH
dTm

dx
¼ q: ðB11Þ

Note that Eq. (B10) has been used to account for the net energy
increase due to conduction. Eq. (B11) is a non-homogeneous ordin-
ary linear differential equation of the second order; its general
solution is of the form:

Tb ¼ C1 þ C2e
um
af

x þ af q
kf umH

x; ðB12Þ

where C1 and C2 are constants to be determined, and af ¼ kf =ðqf cpf Þ.
The net energy increase due to stream-wise conduction can be
written as:

Econd ¼ kf H
d2Tm

dx2 ¼ C2kf H
u2

m

a2
f

e
um
af

x
; ðB13Þ

and that due to convection is given by:

Econv ¼ �qf cpf umH
dTm

dx
¼ �C2kf H

u2
m

a2
f

e
um
af

x � q: ðB14Þ

If C2 – 0, we have the unrealistic situation that jEcondj 
 jEconv j
when x is sufficiently large. Therefore we must have C2 ¼ 0, and
Eq. (B12) becomes:

Tb ¼ C1 þ
af q

kf umH
x: ðB15Þ

from which:

dhTi
dx
¼ af q

kf umH
¼ q

qf cpf umH
¼ 2q

kf Pe
: ðB16Þ

This means that the stream-wise temperature gradient dhTi=dx
is constant in the fully-developed region. The gradient is propor-
tional to the heat source density of plates and inversely propor-
tional to the average fluid velocity, the fluid heat capacity and to
the spacing of the plates.

Eqs. (B10) and (B16) suggest that the distribution of tempera-
ture in the channel has the form:

T ¼ 2q
kf Pe

xþ f ðyÞ: ðB17Þ

Substitution of Eq. (B17) into Eq. (3) and the use of Eq. (1) for
velocity lead to a second-order ordinary differential equation for
the function f(y):

d2f ðyÞ
dy2 ¼ 3q

2kf H
1� y2

H2

� �
: ðB18Þ

from which:

f ðyÞ ¼ � q

8kf H3 y4 þ 3q
4kf H

y2 þ C3yþ C4: ðB19Þ

Due to symmetry in the y-direction, C3 ¼ 0, thus:

f ðyÞ ¼ � q

8kf H3 y4 þ 3q
4kf H

y2 þ C4: ðB20Þ

Finally, the temperature field in the parallel-plate array system
is obtained as:

T ¼ 2q
kf Pe

x� q

8kf H3 y4 þ 3q
4kf H

y2 þ C4; ðB21Þ



Table 1
Values of Nu, A and C for constant wall temperature case and selected values of Pe.

0.001 0.00157 1.29217 56.4032
0.01 0.0156 1.29268 5.63193
0.1 0.154 1.29370 0.578312
1.0 1.28 1.30220 0.702821
2.5 2.39 1.31048 0.380056
5.0 3.17 1.31597 0.0288198
7.5 3.46 1.31820 0.0264768

10.0 3.59 1.31932 0.0255592
15.0 3.69 1.31964 0.0248555
20.0 3.74 1.32015 0.0246123
30.0 3.77 1.32034 0.0244278
75.0 3.78 1.32044 0.0242925

750.0 3.78 1.32069 0.0242653

Fig. 8. Nusselt number Nu determined by Eq. (C16) plotted as a function of Peclet
number for constant wall temperature case. As Peclet number Pe increases, Nusselt
number Nu increases quickly and becomes asymptotic to constant 3.78.
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where C4 is a constant, and can be determined if the temperature at
a given location is given. It can be checked that Eq. (B21) satisfies
the governing equation and the boundary conditions.

Appendix C. Analytical solution for constant wall-temperature
boundary conditions

Under constant wall-temperature boundary conditions, in the
fully-developed region for heat transfer, the local heat transfer
coefficient, defined by Eq. (B1), and the stream-wise gradient of
the dimensionless excess temperature, defined by Eq. (B4), are all
constant. By energy conservation of the volume shown in Fig. 7:

hðTw � TmÞdx ¼ qf cpf umHdTm ¼ �qf cpf umHdðTw � TmÞ ðC1Þ

from which:

dðTw � TmÞ
ðTw � TmÞ

¼ � h
qf cpf umH

dx: ðC2Þ

If follows immediately that:

ðTw � TmÞ ¼ C5e
� h

qf cpf umHx
; ðC3Þ

where the constant C5 can be determined from the inlet condition
(i.e., at x ¼ 0), Tw � Tm;inlet ¼ DT0. Eq. (C3) can be written as:

ðTw � TmÞ ¼ DT0e
� h

qf cpf umHx
: ðC4Þ

Because of Eq. (B4), we have:

T ¼ Tw � hðTw � TmÞ ¼ Tw � hDT0e
� h

qf cpf umHx
: ðC5Þ

where only h is a function of the y-coordinate. Substitution of Eq.
(C5) into Eq. (31) results in:

d2h

dy2 þ h � 3h

2kf H3 y2 þ 3h
2kf H

þ h2

q2
f c2

pf u
2
mH2

 !
¼ 0: ðC6Þ

Introducing the dimensionless coordinate as g ¼ y
H and remem-

bering the definitions of Pe and Nu, we can rewrite Eq. (C6) as:

d2h
dg2 þ h �3Nu

4
g2 þ 3Nu

4
þ Nu2

Pe2

 !
¼ 0: ðC7Þ

Eq. (C7) is a linear second-order ordinary differential equation,
with the Nusselt number Nu and Peclet number Pe appearing as
parameters. If we can find the solution of Eq. (C7), we can deter-
mine the temperature field with Eq. (C5) and then evaluate ther-
mal dispersion for constant wall-temperature boundary
conditions.

It can be shown that Eq. (B8) is also satisfied for constant wall-
temperature boundary conditions. Eq. (B8) can be written as:Z 1

0
½ð1� g2Þh�dg ¼ 2

3
: ðC8Þ

The solution hðgÞ of Eq. (C7) must also satisfy (C8). In addition, it
should satisfy the boundary condition:

hjg¼1 ¼ 0: ðC9Þ

Furthermore, hðgÞ must be an even function, i.e.:

dh
dg

����
g¼0
¼ 0; ðC10Þ

Finally, by definition, hðgÞ must satisfy:

dh
dg

����
g¼1
¼ �Nu

2
: ðC11Þ

Eq. (C7) has the form of the well-known Weber Differential
Equations (2004). With the introduction of a new dimensionless
variable f ¼ 1ffiffiffiffiffiffi
3Nu4p g, Eq. (C7) can be transformed to a standard form

(Parabolic Cylinder Functions, 2004), as:

d2h

df2 � h
1
4

f2 þ p
� �

¼ 0; ðC12Þ

where

p ¼ �
ffiffiffiffiffiffiffiffiffi
3Nu
p

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nu3=3

q
Pe2 < 0: ðC13Þ

The fundamental solutions to Eq. (C12) are the parabolic cylin-
der functions given below (Abramowitz et al., 1964):

h1ðfÞ ¼ e�
f2
4 M

p
2
þ 1

4
;
1
2

;
f2

2

 !
; ðC14aÞ
h2ðfÞ ¼ fe�
f2
4 M

p
2
þ 3

4
;
3
2

;
f2

2

 !
; ðC14bÞ

where Mða; b; xÞ is the Kummer’s function of x with regard to
parameters a and b (Abramowitz et al., 1964); h1 is an even function
and h2 is an odd function. The general solution to Eq. (C12) is the
linear combination of h1 and h2, h ¼ C6h1 þ C7h2. The integral con-
stants, C6 and C7, are to be determined by the restriction conditions.

Firstly, hðfÞ remains as an even function after transformation
from hðgÞ, and hence C7 ¼ 0, resulting in h ¼ C6h1. With the integral
constant C6 renamed as A, the solution to Eq. (C7) is given by:



Fig. 9. Dimensionless temperature h plotted as a function of transverse coordinate g. For transient heat transfer, hðgÞ ¼ 35
24 ð1� g2Þ2, hjg¼0 ¼ 1:4583, hhi ¼ 0:7778; for steady

heat transfer with constant heat flux condition, hðgÞ ¼ 35
136 ð1� g2Þð5� g2Þ, hjg¼0 ¼ 1:2868, hhi ¼ 0:8235; for steady heat transfer with constant wall temperature condition,

hðgÞ ¼ Ae�
1

4
ffiffiffiffiffi
3Nu
p g2

Mð14�
ffiffiffiffiffiffi
3Nu
p

8 �
ffiffiffiffiffiffi
Nu3
p
2
ffiffi
3
p

Pe2 ;
1
2 ; g2

2
ffiffiffiffiffiffi
3Nu
p Þ where Pe ¼ 700, Nu = 3.78, A = 1.3204 and hjg¼0 ¼ 1:3204, hhi ¼ 0:8166.
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hðgÞ ¼ Ae�
1

4
ffiffiffiffiffi
3Nu
p g2

M
1
4
�

ffiffiffiffiffiffiffiffiffi
3Nu
p

8
�

ffiffiffiffiffiffiffiffiffi
Nu3

p
2
ffiffiffi
3
p

Pe2 ;
1
2

;
g2

2
ffiffiffiffiffiffiffiffiffi
3Nu
p

 !
: ðC15Þ

From Eq. (C9), we have:

M
1
4
�

ffiffiffiffiffiffiffiffiffi
3Nu
p

8
�

ffiffiffiffiffiffiffiffiffi
Nu3

p
2
ffiffiffi
3
p

Pe2 ;
1
2

;
1

2
ffiffiffiffiffiffiffiffiffi
3Nu
p

 !
¼ 0: ðC16Þ

If the Peclet number Pe is taken as a free parameter, (C16) sug-
gests that the Nusselt number Nu is dependent upon Pe. For se-
lected values of Pe, (C16) can be solved numerically. The
solutions are listed in Table 1 and plotted in Fig. 8 as functions of
Pe. Note that Nu approaches asymptotically the limit 3.78 as Pe is
increased.

Next, the integral constant A is determined with Eq. (C8); the
result is listed in Table 1 for different values of Pe. To emphasise
the fact that both A and parameter Nu are dependent on Pe, the
solution hðgÞ is written as:

hðgÞ ¼ AðPeÞe�
1

4
ffiffiffiffiffiffiffiffiffi
3NuðPeÞ
p g2

M
1
4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3NuðPeÞ

p
8

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNuðPeÞÞ3

q
2
ffiffiffi
3
p

Pe2 ;
1
2

;
g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3NuðPeÞ

p
0
@

1
A:

ðC17Þ

For Pe ¼ 75, we have Nu ¼ 3:78, A ¼ 1:32044, and the corre-
sponding hðgÞ is plotted in Fig. 9. Because Mða; b; 0Þ � 1, A denotes
the amplitude factor of the dimensionless excess temperature at
the fluid channel centre. For comparison, in Fig. 9, the dimension-
less temperature distribution corresponding to other thermal set-
tings is also shown.

To calculate the thermal dispersion we can substitute Eq. (C5)
into Eq. (14) to show that the relative effective conductivity is
again independent of x-coordinate and is given by:

keff

kf
¼ 1þ Pe2 1

4Nu

Z 1

0
½ð1� 3g2Þh�dg: ðC18Þ

From Eqs. (C8) and (C18), we have:

keff

kf
¼ 1þ Pe2 1�

R 1
0 hdg

2Nu
: ðC19Þ

Apparently, the integral
R 1

0 hdg also depends upon Pe. This is
important because, in contrast with the constant heat flux case,
we no longer have a simple relationship in the form of 1þ CPe2
for the effective thermal diffusivity, as the coefficient C is no longer
independent of Pe. To reiterate this, Eq. (C19) is written as:

keff

kf
¼ 1þ CðPeÞPe2; ðC20Þ
C ¼
1�

R 1
0 hðPe; gÞdg

2NuðPeÞ : ðC21Þ

The value of C is plotted as a function of Pe in Fig. 6.
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